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THE ASYMPTOTIC THEORY OF CONTROL SYSTEMS;
1. STOCHASTIC AND DETERMINISTIC PROCESSES!

David S. Adorno

In this paper we study the asymptotic behavior of a particular class of control systems,
with particular emphasis being placed on the questions of convergence and the steady-state
forms of the loss function and of the system itself. The concept of policy equivalence is intro-
duced and used to show that a stochastic, linear, first-order control system with quadratic loss
function is policy equivalent to the detemministic system which depends only on the expected
states of the system. With this theorem as justification, only deterministic systems are
considered for the remainder of the paper. The extension of this topic to the adaptive control
case (the case in which the parameters of the random noise are not known) is currently under
study and will be reported on in a forthcoming paper. For an appreciation of the adaptive control
case, the reader is referred to Bellman [1 and 2] and Freimer [3 and 4]. The particular class
of control systems referred to above is the class of linear, first-order, matrix difference equations

with quadratic loss criterion.

For an N-stage process in this class, the technique of dynamic programming is used to
determine the optimal policy. From this technique, we obtain the forms of the loss function and
the state vector under optimal control. Convergence of the loss function is established by
showing its monotonic behavior together with uniform boundedness. At this point, it is noted that
the loss function under optimal policy, the optimal policy, and the control system under optimal
policy, are all functions of a certain sequence of matrices R). Hence, the characterization of
the asymptotic properties of the system all depend on the asymptotic properties of the sequence
Ry. This sequence is highly non-linear and very difficult to study in this form. Therefore, a
technique is introduced to convert the non-linear sequence into a set of two simultaneous linear

difference equations. The behavior of this system is then studied, and examples are given.

lThis paper presents the results of one phase of research carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under Contract NASw-6, sponsored by the National
Aeronautics and Space Administration.
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. INTRODUCTION

Consider the N-stage control system (hereafter referred to as the system S) defined by
the linear-vector stochastic difference equation

Xn+1=AXn + Yn + R XI:C1 n = 1,2,3,"',/\’ (1)

n*

(Bold-face type represents vectors or matrices.)
The vectors in Eq. 1 have the following interpretation:

l. X, isap x 1 vector which denotes the state of the system at step n. That
is, the system is describable by p components, and the ith component X,

of X,,i = 1, 2,+++, p denotes the state of the ith component of § on step n.
2. Ais ap x p constant matrix, called the system transformation.

3. Yn is a p x | vector which denotes the amount of control that will be forced
on S at step n. The choice of N control vectors Yy, Y, e+, Yn, for S
symbolized by Y, is called a policy.

4. R, is a sequence of independent, identically distributed random vectors.
The statement that R is a random vector means that Rn isap x 1 vector
and the components R , i = 1,+, p are random variables with a joint

distribution.
5. Cisap x 1 vector which denutes the initial state of the system.

If the system S were allowed to run without control {or equivalently Y Yi =0,

i = 1, 2,40, N), then Eq. 1 would reduce to

Xn+1 = AXn + R", X;=C on =100, N (2)

t is desired to control S so that X_ -~ 0, and, we measure the cost of deviation fom this zero-

[¢}]

state at the nth step by X,:Xn, where the prime denotes transposition. Likewise, the cost of
control at the nth step is 8Y_ Y , & > 0. Then, for a particular policy Y, the expected cost of

operating this N-stage control system S becomes

N N
Ly = 5 Elx,1+8 ) YiY, (3)
n=1 n=1
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where X is defined by Eq. 1 and £ denotes mathematical expectation. We shall use this quadratic

form as the loss criterion for S.

*
Definition 1: The statement that Y is an optimal policy for S means that

Ly(C, Y™) = min [Ly(C, )]
Y

We denote Ly (C, Y" by LTV(C)‘

Definition 2: The statement that a system S is policy equivalent to the system S means that if
* *
Y is an optimal policy in Sy, then Y ~ is also an optimal policy in S, and

conversely,

Definition 3: The statement that S is deterministic means that R, =0 with probability one,
no=1 2 8,,.
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. STOCHASTIC SYSTEMS

Before we can prove the policy-equivalence theorem stated in the summary, a lemma will

be needed.

L.emma 1. Let X_ be defined by Eq. 1. If E(R) and O’2(Rn) both exist, then

o:X, ) =trace (A'A M) + o%(R)

where Mn is the covariance matrix of the coordinates of Xn.

Proof: LethQ,Xn:AXn_l+Yn_1+R Y 4 =Xn—EXn,and

n=1> ©n

Py 2
W, =R, - ER ;then E(Z,)) =0 = EW), E(Z'Z ) = 02X ).

XX ) - ENAZ, ) +W _D'(AZ | + W _))

n=1

=E[Z' | A'AZ _,+ W) _AZ _,+ W _ W _,]

=E[Z)_A'AZ, _] + %R, _)

The last identity follows from the fact that X ., does not
depend on R, _{ but only on R, _o,+++, R;. Since the R, are assumed to
be independently distributed, E(W, 1AZ, ) = E(W’: DA EZ, ) =0.
Now the f.orm of E [Z,: -1 A’ AZn _1] remains to be determined. Let

A'A = B, and note that B is real and symmetric. In general, if Z is a
random vector and B symmetric, then B = ((Bii))’ Z = (Zy, e, Zp),'

p P
E[Z'BZ} = % % B, E(ZZ) - trace BM
j=1 i=1

where M is the covariance matrix for the coordinates of Z. Applying this

result to the problem at hand, the lemma is established.
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Theorem 1. The stochastic system S, defined by Eq. 1 and subject to Eq. 3, is policy-

equivalent to the deterministic system defined by

Exn+1:AExn+Yn+ERn, Ex1=c, n=1,2’ooo,N

with loss function

N N
L€V = ) EX) EX,+8 ) Y.Y
n=1 n=1

when E(R ) and O'2(Rn) exist,

Proof: It is easy to establish the identity Uz(xn) = E(X,'l X,)-(EX) “(E X))
Substitution into Ly(C, Y) yields

N N N
L€V = > EX)EX)+ » oXX)+8 » V.Y,
n=1 n=1 n=l

From Lemma 1, 02(Xn +1) = trace (A 'AMn) + Uz(Rn), where M_ is the
covariance matrix of Xl N, SR TIN Xp ne Since the covariances are formed from
Xi, .- EX

i the effect of control is cancelled, so that Uz(xn) is free of

Y,. The assertion now follows.

The significance of Theorem 1 is clear. It points out that the optimal policy of a
stochastic system in this class depends only on the expected states, no matter how wildly the
system fluctuates about the expected states. With this theorem as justification, the remainder

of this paper will be devoted to the deterministic system.
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Ill. DETERMINISTIC SYSTEM SOLUTIONS

The N-stage control process that we wish to analyze now is Eq. 1 without noise, i.e.,

xn+1=Axn+Y xl'—'—c, ﬂ=1, 2,"’,N’

n?

LG A Y) = ) XIX +5 > oYY, 550
=1 =]
At this point, it will be helpful to recall Bellman’s Principle of Optimality [5], ‘“An optimal
policy has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first
decision,” and apply it to our problem.
N N
LMC A) = min |[C'C+ 8Y{Y + > X)X, +8 » Y'Y,
Y
n=2 n=2
But
N N
S XiX) e s (XiX) =Ly (X, AY)
n=2 n=2
Therefore, if we require that the last N — 1 steps be optimal with regard to the new initial
position Xy = AC + Y, we need merely to choose Y| properly. Hence,
Ly(C, A) = win [c'C+8Y{Yy + Ly _y(AC + ¥, W) (5)
1

The required loss function is now the solution to this functional equation. To solve Eq. 5, note

that L;(C, A) = 0; therefore,
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LY(C, A) = min [C'C + 8Y{Y, + Lo(AC + Y, A)]
Y1

=c'c=C'IC

(where I is the identity matrix) which occurs when Y; = 0. This is consistent with physical

considerations. Continuing in the same manner,

LyC, A =min [C'C + 8Y]Y, + LY(AC + Yy, A)]

]
g8
=

i
8
=

[C'U +A'A)C+2C'A'Y; + Y{YI]

c' +A'U+HAl €

which occurs when Y = - (8 + 1)"1 AC. This suggests Theorem 2.
Theorem 2,

* 1

(6)
Ry =1, Ry, =1+A"[Ry!+8 111 A N=12-

Proof: To establish the theorem rigorously, we proceed by induction.
It was proved for N = 1, 2, so let the induction hypothesis be that the theorem
is true for N = K, and show that it is true for N = K + 1. From Eq. 5

Ly +1(C, A) = min [C'C + 8Y{Y, + LY(AC + Y, A)]
Y1
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By hypothesis,
Li(AC + Y, A) = (AC + Y)' Ry(AC + Y))
Substitution yields

Ly +1(C, A) = min [C'(I + A"RiA) C + 2Y{ RGAC + Y{(Ry + 31 Y]
Y
1

Each term in the expression to be minimized is a scalar, and moreover, the first

teem C'(1 + A'RgA) C is independent of Y. Accordingly, define
F(Y)) = 2Y RLAC + Y{(Rg + D) Y,

which maps the vectors Yl into the reals, and

dF(Y,) oF(Y,) dF(Y,) oF(Y,)

, MLLLES

Y, 911 991 9Yp1

Y= lp ygp e ypl)‘

The minimum of F(Y,) will occur (Ry is positive definite) when Y| = Y; =
- (31 + RK)-1 RiAC, which will yield the desired result.

The dynamic programming approach used to obtain the form of L;V in Theorem 2 will also
. . . *
yield the optimal policy, Y . The proof of Theorem 2 already gave us the first vector in the
optimal policy,

Y1 MO = - (81 + RY™I Ry AC (7

Since X, depends on Yy, Yo,eer, Yy _ p» but not Yy, it is obvious that Y;’N(C) =0. Let us

denote the ith vector in the optimal policy for the N-stage process (Eq. 4) as Y: N{C). Then we
can state Theorem 3.
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Theorem 3.
YiN© = Y] yoiar XD, i =1, 20, N (8)
where X:-‘ denotes the state of S on the ith step under optimal policy.
To determine X:, we utilize Theorem 3 recursively and obtain Theorem 4.
Theorem 4.

581 + Ry ;4 VAX; ), i>
X - (9)

\4
3]
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IV.  ASYMPTOTIC THEORY

The natural question at this point is that of the convergence of the loss function under

optimal policy. For the remainder of this Section, the only policy used will be the optimal policy.
Theorem 5.
Lr(C, &) » LL(C, A) < 2 as N »

Proof. L:,(C, A) is uniformly bounded. To see this, consider the policy Y:
Y, = - AC, Yi =0,i =23+, N, in which Y forces S to the zero-state on the

second step and to remain there afterwards. This policy has loss function

Ly(C, A, Y)

il

N N
> XX, 48 > Yy,
=1 n=1

i

C'C +3AC)' (AC)=C'(I +3A'A)C
which is independent of N, Since L;,(C, A) is optimal,
Ly(C, A) < Ly(C, A Y) = C'(1 + SA'A) C

for all N. This establishes uniform boundedness.

v . . * . . .
Now it will be demonstrated that LN(C, A) is a monotonic, non-decreasing

function of N. Since Y*N +1. N +1 = 0, consider this policy for an N-stage

process; i.e.,

% * *

"4 ’
Y- '1,N+1’ Y2,N+1’."’ YIV,'\("]

The next statement readily follows:

LN(C, A < Ly(C, A, Y) = Ly (C, A),

10
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A . * .
The proof of Theorem 5 simply shows that the sequence Ln(C, A) always converges; it
is not constructive in that it does not yield the value of the limit or determine the rate of

convergence. A partial resolution of these issues will now be attempted.

* *
Before we proceed further, note that the forms for L \(C, A), xi*N and Y; . are dependent
on Ry. This means that most of the asymptotic theory will depend on the characterization of
lim Ry as N » oo. This is rather unfortunate in the sense that the matrix algorithm defining Ry,

is highly nonlinear. Hence, some thought will be given to the analysis of Eq. 6.

Assume a solution in the form RN = UNV;/I. Then

RN+1=UN+1 VI:'1+1=’+AI[VNU1-\.11+S—IIJ—IA (10)

]

7 1 -
I+ A uN[vN+guN] La.

Assuming Ato be non-singular,

- - - 1 . 1 -1

- S
Letting
1 !
1
AVi o=~ Uy + Vy (11b)

We succeed in writing Eq. 6 as two simultaneous, linear, matrix difference equations with

constant coefficients. Continuing in this form, from Eq. 11a,

1
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1 i
AUN+2 =VN+1 +gUN+l +AA UN+1

B , 1
A 1 [ﬁUN + VN] + BUN +1 + AA UN+1’ B = —
8

(B + AA") Uy, + BA™ Uy « [Uy,, - AT1 (81 + AAY) Uy]

1

it

(A +8) 1 +AA'] Uy, -A'U,

Therefore,

Uysog - [+ ATL 4 A T Uy, -4a T AU

which is a linear matrix difference equation of the second order with constant coefficients. Note
that U; = V, which is arbitrary. To simplify the algebra, let B = A’ + (1 + ) A—l,
D - A"l A’ and obtain

Uy,, =BUy,, + DUy (12)

Assume a solution in the form Uy = ZNF, where Z is a scalar and F a constant p X p matrix.

Substituting into Eq. 12 and clearing,

(Z% - ZB -D)F =0 (13)

In order that non-trivial matrices F exist which satisfy Eq. 13, Z must satisfy the determinantal,

or characteristic, equatiun

72 -7 -D|=0 (14)

This characteristic equation is of degree 2p in Z, and every root of Eq. 14 will yield an F so that

ZNF satisfies Eq. 13, which is a necessary condition that it satisfy Eq. 12,

12



Jet Propulsion Laboratory Technical Release No. 34-73

The remainder of the technique will be illustrated by examples, and a lemma will be

stated for the case p = 2.

Lemma 1. I p = 2, and A is non-singular, then the characteristic equation (14) becomes

Z* — (trace B) Z3 + (|B | ~ trace D) Z2% — (trace B) Z + 1 = 0 (15)

Notice that in this case, if Z is a root of Eq. 15, then 1/Z is a root of 15 also.

Example 1. Let A = [é ?] , 9= 1. Then B = 3l and D = ~ I, and Eq. 14

becomes

z* 623 + 1122 -6Z +1=(22-3Z+ D% =0
Solving the quadratic, we get two distinct real roots, each of multiplicity two,
namely Z, = (3 + V/5)/2 and Zg = (3~ V5)/2. Virite UN = Z?]Fl + Zng,

and notice that Uy ~ ZYF since 0 < Zy < 1 < Z;. To obtain Vyy, we go back
to Eq. 11a;

VN: UN+1 —(,Bl+l)UN

_ 7N +1 N+1 N ]
=zy*VE 4 2D Fz_zleI_zng2

]

N
—Z
P

]%
| =
~—
n
—
|
N
N2
N
N
+
a—y
~—
)

and hence,

13
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Therefore,

which one can verify as the correct answer.

Theorem 5 states that we have convergence for all A and & > 0. Thus, Example 2 is
designed to show what can be done when A is singular.

Example 2. Let A = [i i] , o = 0.5. Since A is singular, multiply Eq. 13 on
the left by A and use |Z2A - [0+ B) 1 +AA'] Z + A' | = 0 as the
characteristic equation. This yields IZz[i %] - [g g] Z + [% %] l =0,
whose roots are Z; =(7 + V/33)/4, Zy=(T- J/33)/4, and Z4 =0. Notice that a
singular A may yield a characteristic polynomial of degree less than 2p. Write
UN = lev Fi+ Zg F,, (23 = 0); then UN ~ Zq] F,. Again, Vy can be
computed from Eq. 1la:

Yy

ZY*VAF, + ZYPY AR, - (81 + A (ZYF, + ZYF )

l

ZY[ZA - Bl -AA'] Fy + ZY(Z,A - 1 - AA'] F,
Vil ~ ZIVN FIY [Z,A - B1 - AA' ]

Therefore,

Ry~ [Z,A -1 —AA']"!

Completing the calculations we find that

. 1 9 - 33, 33-1
433 -5 | v33 -1, 9 - /33

14
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The examples also illustrate Theorem 6,

Theorem 6. R, converges exponentially to R.

A direct solution may be obtained for R when A = I. In this case, the matrix equation to

be solved is

-
1 "]
R=1+A" |[RTV+ 2 A
5
1T -1
R=1+|R+21
6—
1 1
RIR Y4+ Il =R Y2141
5 S

Multiplying both sides by R and collecting terms,

RZ_R-681=0

Assume a solution in the form R = al, where a is a real number then

(a2 —a-8] 1 =0

or

15
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Since R is positive definite, only the positive sign can be used, and we obtain

1+/1+ 4598

R-—"" "
Ifp = 2and 5 = 1, then 2

which agrees with results obtained.

16
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